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A recent analysis of Brownian motion in granular media undergoing homoge-
neous cooling implies a violation of the Einstein relation between the diffusion
and mobility coefficients. It is shown here that this violation occurs more
generally. The usual method of linear response to an external force is generalized
for inelastic collisions, where the reference state at zero applied force is the
homogeneous cooling state. Formally exact Green–Kubo type expressions are
compared for the mobility and diffusion coefficients of an impurity particle in a
granular fluid. The results show that the absence of the Gibbs state, the cooling
of the reference state, and the occurrence of different kinetic temperatures for
the particle and surrounding fluid are responsible for a violation of the Einstein
relation. A quantitative description of the effect over a wide range of densities
and restitution coefficients is provided by an approximate evaluation of the
associated response functions.

KEY WORDS: Granular gases; Green–Kubo expressions; Mobility and diffu-
sion; Einstein relation.

1. INTRODUCTION

The simplest microscopic model of a granular fluid is one composed of hard
spheres with inelastic collisions. The isolated fluid supports a homogeneous
cooling state (HCS) which is the analogue of the Gibbs equilibrium state.
Recently, the transport properties for small spatial perturbations of this
state have been studied in detail for a wide range of values for the restitu-
tion coefficient using both the Boltzmann kinetic equation (1) and its dense
fluid extension, the Enskog equation. (2) The results support the view that
hydrodynamic concepts for fluids with elastic collisions extend quite
naturally to those with inelastic collisions when appropriate modifications



are made. (3) An interesting special case is that of Brownian motion.
A detailed description has been developed from an asymptotic expansion in
the mass ratio of the fluid particle relative to a heavy impurity particle,
based on the Boltzmann–Lorentz equation. (4) The resulting Fokker–Planck
equation admits an exact solution that provides the controlled description
for a range of transport phenomena. As expected, the usual detailed
balance condition associated with the equilibrium Gibbs state is violated.
This is reflected in the surprising property that the kinetic temperatures of
the fluid and impurity particles are different, although their cooling rates
are the same. The predictions of this asymptotic theory have been con-
firmed by direct Monte Carlo simulation of the Boltzmann–Lorentz equa-
tion and by molecular dynamics simulation. (5) An implication of this
analysis, not explicitly noted in ref. 4, is that the response to an external
force on the impurity particle leads to a mobility coefficient that violates
the Einstein relation (10) between the mobility and diffusion coefficients. The
objective here is to elaborate on this qualitative difference between real and
granular fluids in a more general context, and to identify the mechanisms
behind it.

The strongest form of the Einstein relation for equilibrium states is
provided by the exact Green–Kubo expressions for the mobility and diffu-
sion coefficients, obtained using linear response methods. Such methods
have been extended to diffusion in granular fluids (6) and, as shown below,
they can be used to obtain the mobility coefficient for a granular fluid as
well. The derivations are formally exact and therefore do not have a priori
limitations on the mass ratio, density, or degree of inelasticity. The Einstein
ratio between the diffusion coefficient D(T(t)) and the mobility m(T(t)) is
defined by

E=
D(T(t))

T(t) m(T(t))
. (1)

The time dependence of the temperature reflects the fact the reference HCS
is cooling. For elastic collisions E=1, but otherwise it is shown below to
be a time independent function of the restitution coefficients for the
impurity–fluid and fluid–fluid collisions, as well as the mass and tempera-
ture ratios. An approximation to the response functions, expected to be
valid for a wide range of these parameters, is used to give a quantitative
description of the effect.

The paper is organized as follows. In Section 2, the main physical
source for the violation of the Einstein relation is presented by using a
phenomenological Langevin equation. The linear response of an impurity
particle in a HCS fluid is described in Section 3 to identify the Green–Kubo
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expression for the mobility coefficient. In Section 4, this is compared to the
corresponding expression for the diffusion coefficient, derived elsewhere. (6)

The Einstein ratio E is shown to be independent of the cooling rate and is
expressed in terms of dimensionless ‘‘stationary’’ state response functions.
These time correlation functions are evaluated in a leading order cumulant
expansion to provide explicit expressions for the Einstein ratio. The results
are illustrated for several values of the relevant parameters. It is observed
that the approximation considered agrees with a corresponding analysis
based on the Enskog kinetic equation. Finally, the results are discussed in
Section 5.

2. PHENOMENOLOGICAL OVERVIEW

Linear response for granular systems is inherently different from the
usual theory for normal fluids since the reference state is always a non-
equilibrium state. This is manifest for the HCS since it has a time depen-
dence through its cooling. Before proceeding with the exact analysis, it is
instructional to see the effect of this time dependence on the Einstein ratio
in a simple derivation based on a phenomenological Langevin equation for
the impurity particle (10)

[“t+c(T(t))] m0v0=f(t)+F. (2)

Here, c(T(t) is the friction coefficient with an explicit dependence on the
fluid temperature, m0 and v0 are the mass and velocity, respectively, of the
impurity particle, F is an external applied force, and f is a stochastic force
representing the random effects of fluid particle–impurity particle colli-
sions. The stochastic force has a vanishing average and is ‘‘causal’’

Of(t)P=0, Of(t) · v0(t −)P=0, t > t − (3)

The solution to the Langevin equation is

v0(t)=U(t, t −) v0(t −)+F
t

tŒ
dy U(t, y)[f(y)+F] (4)

where U(t, t −) is the solution to Eq. (2) with f=F=0 and U(t −, t −)=1.
The linear response to the external force is obtained directly by

averaging Eq. (4) to identify the mobility m(t)

Ov0(t)P=U(t, 0)Ov0(0)P+m(t) F, m(t)=F
t

0
dy U(t, y). (5)
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Similarly, the diffusion coefficient is determined from

D(t)=1
6 “tO[r0(t)− r0(0)]2P=

1
3 F
t

0
dyOv0(t) · v0(y)P, (6)

where r0 denotes the position of the impurity particle. In the absence of the
external force, the velocity autocorrelation function can be calculated by
taking the scalar product of Eq. (4) with v0(t −) and averaging to get

Ov0(t) · v0(t −)P=U(t, t −)Ov20(t
−)P+F

t

tŒ
dy U(t, y)Of(y) · v0(t −)P

=U(t, t −)Ov20(t
−)P. (7)

The diffusion coefficient is given by

D(t)=
1
3
F
t

0
dy U(t, y)Ov20(y)P=

1
m0

F
t

0
dy U(t, y) T0(y). (8)

In the last equality the kinetic temperature of the impurity particle has been
introduced by T0(y)=m0Ov

2
0(y)P/3. For systems with elastic collisions the

temperature is a constant in time and equal to the fluid temperature,
resulting in the Einstein relation D(t)=Tm(t)/m0. Clearly, the cooling of
the HCS due to inelastic collisions invalidates this relation, since the tem-
perature is changing during the response time and contributes differently to
the mobility and diffusion coefficients.

The phenomenological analysis given here in terms of the Langevin
equation can be made formally exact for elastic collisions using linear
response methods. In detail, the exact Einstein relation also requires prop-
erties of the Gibbs ensemble. The parallel analysis for inelastic collisions
given in the following sections also is formally exact. The violation of the
Einstein relation is due to the fact that the HCS is a nonequilibrium state,
both in the sense of a time dependent temperature, leading to the effect in
Eq. (8), and also the fact that it is not represented by the Gibbs ensemble.

3. LINEAR RESPONSE AND MOBILITY

Consider a fluid of N identical particles of mass m, diameter s, and
interparticle restitution coefficient a. Initially, an additional impurity par-
ticle of mass m0, diameter s0, and interparticle restitution coefficient a0 is
added to the system. The position and velocity coordinates of the impurity
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particle are denoted by r0 and v0. The Liouville equation for the composite
N+1 particle distribution function is (7)

(“t+L̄) r(C, t)=0, (9)

where the Liouville operator generating the dynamics is given by

L̄=C
N

i=0
vi ·Ni− C

N

i=1
T̄(i, 0)− 12 C

N

i=1
C
N

j ] i
T̄(i, j)). (10)

The first term on the right side generates free streaming while the second
terms describe velocity changes. The binary collision operator T̄(i, j) for
fluid particles i and j is

T̄(i, j)=s2 F dW G(gij · ŝ)(gij · ŝ)[a−2d(rij−s) b−1ij −d(rij+s)], (11)

where dW denotes the solid angle integration for the unit vector ŝ, rij is the
relative position vector of the two particles, and the operator b−1ij is a substi-
tution operator, b−1ij F(gij)=F(b−1ij gij), which changes the relative velocity
gij=vi− vj into its restituting velocity

b−1ij gij=gij−
(1+a)
a

ŝ(ŝ ·gij). (12)

The binary collisions between fluid particle i and the impurity are similar
to those for collisions among fluid particles

T̄(i, 0)=s̄2 F dW G(gi0 · ŝ)(gi0 · ŝ)[a−20 d(ri0− s̄) b−1i0 −d(ri0+s̄)], (13)

with s̄=(s+s0)/2 and the operator for impurity–fluid restituting colli-
sions is

b−1i0 gi0=gi0−
(1+a0)
a0

ŝ(gi0 · ŝ). (14)

For an isolated system there is no stationary solution to the Liouville
equation corresponding to the spatially homogeneous Gibbs state, due to
the inherent time dependence associated with loss of energy in collisions.
Instead, there is evidence for a homogeneous scaling solution (HCS) whose
time dependence occurs entirely through a scaling of the velocity

rhcs(C, t)=(av(t))−3(N+1)rg
hcs({rij/a, vi/v(t)}) (15)
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The dimensionless distribution function rg
hcs is invariant under space

translations, with the coordinates scaled relative to the mean free path
a — 1/ns2. All time dependence occurs through the mean velocity per par-
ticle v(t) defined through the total kinetic energy for the system

v2(t) —
2
3N

F dC rhcs(C, t) C
N

i=1
v2i —

2T(t)
m

. (16)

The second equality defines an associated temperature for the fluid. The
time dependence of v(t) and T(t) can be calculated from the Liouville
equation (9) and the explicit form of L̄

“t ln T(t)=−z(t)=2“t ln v(t), (17)

where z is the ‘‘cooling’’ rate

z(t)=(1−a2)
s2

6nv2(t)
F dv1 F dv2 F dW G(gij · ŝ)

×(gij · ŝ)3 f
(2)
hcs(v1, v2, r12=s; t), (18)

f (2)hcs being the reduced two particle distribution associated with rhcs(C, t).
The contribution from the impurity particle vanishes in the thermodynamic
limit and has been neglected. The reduced distribution has the same scaling
property as rhcs(C, t) so it is easily verified that z(t)3 v(t). Therefore,
Eq. (17) can be integrated for the explicit time dependence of v(t) and T(t)

v(t)=v(0)[1+1
2 z(0) t]

−1, T(t)=T(0)[1+1
2 z(0) t]

−2. (19)

Substitution of Eq. (17) into the Liouville equation gives

L̄rhcs=0, L̄ — L̄+1
2 z(t) 53(N+1)+C

N

i=0
vi ·Nvi 6 , (20)

where Nvi — “/“vi. The self-consistent solution to the coupled set of equa-
tions (18) and (20) completely determines rhcs. The dependence on the
(dimensionless) relative coordinates {rij/a} assures that it is translational
invariant and represents a spatially homogeneous fluid.

Now consider a perturbation of the HCS due to a small constant force
F exerted only on the impurity particle. The Liouville equation to linear
order in this force is

(“t+L̄) r(t)=−
F
m0

·
“

“v0
rhcs(t). (21)
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Before solving this equation, it is useful to introduce dimensionless
variables to eliminate the time dependence of the HCS. An appropriate set
of dimensionless particle coordinates, velocities, and time are given by

rgi=ri/a, rgij=rij/a, vg
i=vi/v(t), s(t) —

1
a
F
t

0
dy v(y). (22)

The dimensionless time scale is the integral of the average collision
frequency and thus is a measure of the number of collisions in time t. In
terms of these variables, Eq. (21) becomes

(“s+L̄g) rg=−Fg(s) ·
“

“vg
0

rg
hcs, (23)

where L̄g is the dimensionless form of L̄ in Eq. (20). It has the same form
in the dimensionless variables, with sQ sg, s̄Q s̄g and z(t)Q zg. Here,

sg=s/a, s̄g=s̄/a, zg=az(t)/v(t), Fg(s)=
aF

m0v2(t)
, (24)

r(C, t)=(av(t))−3(N+1) rg({rgij, v
g
i }, s). (25)

Note that the generator for the isolated fluid dynamics is independent of s
as is rg

hcs. However, the external force has inherited a dependence on s due
to the velocity and time scaling. The formal solution to Eq. (23) is

rg(s)=e−(s−s0) L̄
g
rg(s0)−F

s

s0
ds − e−(s−sŒ) L̄

g “rg
hcs

“vg
0

·Fg(s −) (26)

The average velocity of the particle at ‘‘time’’ s follows directly from
an average over the solution (26)

Ovg
0 ; sP=Ovg

0 ; s0P+2 F
s

s0
ds − Rm(s−s −) Fg(s −), (27)

where

Ovg
0 ; sP=F dCg vg

0 r
g(s) (28)

and the response function Rm(s) is

Rm(s)=−
1
6
F dCg vg

0 · e
−sL̄g “rg

hcs

“vg
0

=−
1
6
7vg

0 (s) ·
“ ln rg

hcs

“vg
0

8
hcs

(29)
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The notation here is

vg
0 (s)=e sL

g
vg
0 , OXPhcs=F dCg rg

hcsX(Cg), (30)

where Lg is the adjoint of L̄g, given explicitly in Appendix A. Restoring
the dimensions to the average velocity and force gives

Ov0; sP=Ov0; s0P+
2a

m0v(t)
F
s

s0
ds −

v2(t)
v2(t −)

Rm(s−s −) F

=Ov0; s0P+
2a

m0v(t)
F
s

s0
ds − e−z

g(s−sŒ)Rm(s−s −) F. (31)

The second equality uses the explicit form v2(t)=v2(0) e−z
gs as follows

from (17), (19), and (24). Finally, consider the case where the force is
applied in the remote past when the fluid is in the HCS. Then Eq. (31) can
be written as

Ov0; sP=Ov0;−.P+m(T(t)) F (32)

which identifies the mobility coefficient as

m(T(t))=
2a

m0v(t)
F
.

0
ds − e−z

gsŒRm(s −). (33)

There is an explicit time dependence through the temperature, as expected,
due to the cooling of the granular fluid. However, there is an additional effect
of the cooling during the evolution of the response so that the mobility
coefficient is not simply determined by the time integral of the response
function. Instead there is a new factor of e−z

gsŒ multiplying the response
function.

As noted in ref. 3, the HCS is unstable to long wavelength perturbations,
with the critical wavelength lc=2p`g/2z, where g is the shear viscosity.
The above limiting form for response at asymptotically late times must be
understood in the following context. For systems of largest dimension less
than lc the system is stable and the formal long time limit is limited only by
the Poincare recurrence time. In this case, as for normal fluids a plateau
value should be reached after several collisions that is common for all
experimentally relevant future times. The technical problem of finite Poin-
care recurrence time is not relevant for time scales of experiments or simu-
lations, but can be avoided altogether by taking the limit of infinite volume
at fixed density. Now there is a time scale for the onset of the instability
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that can occur on the relevant time scales for simulation and experiment.
Equation (21) assumes the deviation of r(t) from rhcs(t) is small for suffi-
ciently small F, but this is not the case for times large compared to that for
the onset of instability. Thus, the mobility and diffusion coefficients are
meaningful only if the time for instability is longer than the few collision
times required to reach the plateau value. At low density this is clearly the
case, even at strong dissipation, as demonstrated by both Monte Carlo (8)

and molecular dynamics simulations. (9) At high densities and large dissipa-
tion, it appears that the instability occurs too rapidly for the present
analysis based on the HCS to be meaningful.

4. IMPURITY DIFFUSION AND EINSTEIN RELATION

The diffusion of the impurity particle in the HCS has been studied in a
similar way using linear response to an initial perturbation of the probability
density for the impurity. The details are given elsewhere (6) so only the result
is quoted here. The diffusion coefficient D is given by

D(T(t))=av(t) F
.

0
ds − RD(s −), (34)

where the response function RD(s) is

RD(s)=
1
3 Ov

g
0 (s) · v

g
0Phcs. (35)

The Einstein ratio defined in Eq. (1) therefore can be written as

E=
D(T(t))

T(t) m(T(t))
=

m0
m

>.0 ds − RD(s −)

>.0 ds − e−z
gsŒRm(s −)

. (36)

In the elastic limit zg Q 0,Rm(s)Q (m0/m) RD(s), and the usual Einstein ratio
EQ 1 is recovered. However, at finite inelasticity the relationship between
D(T(t)) and m(T(t)) is no longer simple. There are three separate reasons
for this difference. First, the additional factor of e−z

gsŒ in the integration
over the response function for m(T(t)) arises because the temperature
dependence of the mobility and diffusion coefficient are different. Since the
temperature is changing during the correlation time for the response, it
generates different dynamics in the two cases. The second reason for a
change in the Einstein ratio is that rhcs is not the Gibbs state and conse-
quently “ ln rg

hcs/“v
g
0 ] −2(m0/m) vg

0 , i.e., the response function for the
mobility is no longer proportional to the velocity autocorrelation function.
A third reason, not apparent at this formal level, is that the temperature of
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the impurity particle is different from that of the fluid except when the
impurity is mechanically equivalent to particles of the fluid. (11)

Equation (36) is still exact and is the primary result of this analysis. To
estimate the dependence of E on the relevant parameters (restitution coef-
ficients, mass ratio, size ratio) the response functions are expanded to
leading order in a cumulant expansion (6)

RD(s)Q RD(0) e−w
g
D s, Rm(s)Q Rm(0) e−w

g
m s (37)

with

wg
D=−

O(Lgvg
0 ) · v

g
0Phcs

Ovg2
0 Phcs

, (38)

wg
m=−

7(Lgvg
0 ) ·
“ ln rg

hcs

“vg
0

8
hcs

7vg
0 ·
“ ln rg

hcs

“vg
0

8
hcs

=
1
3
7(Lgvg

0 ) ·
“ ln rg

hcs

“vg
0

8
hcs
. (39)

This type of expansion is exact at short times or in the limit of large
impurity/fluid mass ratio. For elastic collisions it is known to provide a
good approximation for longer times as well, and it is reasonable to expect
that this accuracy extends also to inelastic collisions. The mobility and dif-
fusion coefficients become

m(T(t))Q
2a

v(t) m0
Rm(0)

1
wg
m+z

g=
a

v(t) m0

1
wg
m+z

g , (40)

D(T(t))Q v(t) RD(0)
a

wg
D

=
1
2
av(t)

T0(t)
T(t)

m
m0

1
wg
D

, (41)

where use has been made of the results

Rm(0)=−
1
6
7vg

0 ·
“ ln rg

hcs

“vg
0

8
hcs
=

1
2
, (42)

RD(0)=
1
3
Ovg2
0 Phcs=

1
2
m
m0

T0
T
. (43)

Here, it has been recognized that the temperature of the impurity par-
ticle T0(t) is different from that of the fluid for granular systems, as noted
above. However, the cooling rates are the same so that T0(t)/T(t) is time
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independent. The specific dependence of T0(t)/T(t) on restitution coeffi-
cients, mass ratio, and size ratio is complex and is discussed in detail in
ref. 11. The Einstein ratio becomes

E=
T0(t)
T(t)

wg
m+z

g

wg
D

. (44)

The expressions for wg
m , w

g
D, and z

g are evaluated in Appendix B with the
results

wg
D=−

1
2
zg+ng 51+c0

16
4h+3
(1+h)2

−
c1
16

h2

(1+h)2
6 , (45)

wg
m=w

g
D−

c0
4
ng

(1+h)
, (46)

zg=(1−a2) q
4
3
=p

2
11+ 3

32
c1 2 , (47)

with the definitions

ng=
4
3
`p

m
m+m0
1 s̄
s
22 q0(1+a0) h−1/2(1+h)1/2, (48)

h —
m0
m

T(t)
T0(t)

. (49)

The frequency ng is an average impurity–fluid collision frequency, depend-
ing on the mass ratio and the impurity–fluid collision restitution coeffi-
cient. In contrast, the cooling rate depends only on fluid properties. The
constant c1 measures the deviation of the fluid velocity distribution from
Maxwellian and is given by Eq. (B8). Similarly, c0 measures the deviation
of the impurity velocity distribution from Maxwellian. It is more complex
and is described in ref. 11. Both c0 and c1 vanish in the limit of elastic colli-
sions, and otherwise give contributions of the order of a few percent to wg

m ,
wg
D, and z

g even at very strong dissipation. The density dependence of E
occurs only through the factor q in zg and the factor q0 in w

g
m and w

g
D. These

are the configurational pair correlation functions for the fluid–fluid and
impurity–fluid pairs at contact, respectively. These functions have a density
dependence that differs only when the size ratio differs from unity. Thus the
Einstein ratio becomes independent of density for same size particles.

Equations (45)–(49) determine the mobility and diffusion coefficients
through Eqs. (40) and (41). Approximate expressions for these transport
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coefficients can be obtained as well from the Enskog–Lorentz kinetic
equation by application of linear response (perturbation by a small exter-
nal force) for the mobility and by the Chapman–Enskog method for the
diffusion coefficient. It is interesting to note that the results of the cumulant
expansion agree in detail with these kinetic theory results (first Sonine
approximation). (12) In addition, special limits of small fluid–impurity mass
ratio (4) and elastic fluid–fluid interactions (but inelastic impurity–fluid) (13)

are also recovered. A closely related analysis of self-diffusion has been
given by Brilliantov and Pöschel, (14) who also use a cumulant expansion for
the velocity autocorrelation function. However, their analysis is in real time
for which the velocity autocorrelation function is not stationary. This
complication leads them to uncontrolled approximations on the cooling
and their resulting self-diffusion coefficient does not agree with that from
Boltzmann or Enskog kinetic theory.

A simpler, and still accurate, form for the Einstein ratio is obtained by
neglecting the small effects of c0 and c1

EQ
T0
T

1+zg/2ng

1−zg/2ng
, (50)

zg

ng
=

(1−a2)
(1+a0)

m+m0
m

q

q0
1s
s̄
22= h

2(1+h)
. (51)

Fig. 1. Plot of the Einstein ratio E as a function of the restitution coefficient a=a0 for
s=s0, and three different values of the mass ratio: m0/m=0.5, m0/m=1, and m0/m=4.
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Fig. 2. Plot of the ratio E(ng)/E(0) as a function of the reduced density ng=ns3 for
a=a0=0.8, m0/m=2 and two values of the size ratio: s/s0=0.25, and s/s0=4.

This shows most directly the dependence on mass ratio, size ratio, restitu-
tion coefficients, and temperature differences. For mechanically identical
particles this reduces to

EQ
3−a
1+a

. (52)

To illustrate the influence of dissipation on the Einstein ratio E more
generally, consider the particular case a=a0. Figure 1 shows the dependence
of E on the restitution coefficient a for s=s0 and three different values of
the mass ratio m0/m. As might be expected, the deviation of E from 1
increases with decreasing a, and is greatest when the impurity particle is
heavier than the fluid particles. The dependence of E on the reduced
density ng=ns3=s/a is shown in Fig. 2 for m0/m=2, a=0.8, and two
different size ratios: s/s0=0.25, and 4. In this figure the extendedCarnahan–
Starling approximation for the pair correlation functions q and q0 as a
function of ng has been used, (15)

q=11− 1
12
png211−1

6
png2−1, (53)

q0=
1

1−t
+
p

4
ng

(1−t)2
1sg

0

s̄g
2+p

2

72
ng2

(1−t)3
1sg

0

s̄g
22, (54)
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where t=(pn/6) s3=(p/6) ng is the volume packing fraction. The influence
of density on the Einstein ratio is not as strong as that found for the mass
ratio, although it seen to be significant.

5. DISCUSSION

The analysis here has been based on a formally exact description of
transport (diffusion and mobility) in the homogeneous cooling state.
Green–Kubo expressions for the transport coefficients were obtained by
extending familiar linear response methods for fluids with elastic collisions
to granular fluids. There are some complications due to the time depen-
dence of the reference state, necessitating a change of time scale. In the
resulting dimensionless representation the modified Liouville equation
supports a stationary solution, the homogeneous cooling state (HCS), and
application of linear response is then more straightforward. However, in
addition to the nonlinear change in time scale there appears explicitly in the
modified Liouville equation a new fundamental frequency, the cooling rate.
The time dependence of the response functions and their relationship
to transport coefficients is therefore more complex. The approximate
cumulant expansion exposes this complexity in two ways. First, the
approximate decay is exponential in the new time scale s, implying alge-
braic decay in real time. Second, the characteristic frequency for this
exponential decay is the difference between an impurity–fluid collision
frequency and the cooling rate, wg

D=n
g− 12 z

g. In the HCS, zg=zg0 , where
zg0 is the corresponding cooling rate for the impurity particle. This equality
determines the temperature ratio T0/T and it is possible to show that
wg
D > 0 for all values of the density and restitution coefficients. There is a

peculiar ‘‘phase transition’’ in the limit of large impurity/fluid mass ratio
for which the diffusion coefficient is normal in one phase and grows
without bound in the other. (17)

The deviation of the Einstein ratio from unity has three distinct origins.
These can be isolated explicitly in the approximate form (44). The deviation
of the homogeneous cooling state from the Gibbs state is responsible for the
coefficients c0 and c1 being non zero. This is a relatively small effect quanti-
tatively speaking. The effect of cooling on the time integral of the response
functions for the mobility coefficient occurs through the shift of wg

m to
wg
m+z

g in the numerator. This feature is described phenomenologically in
Section 2. Finally, the effect of different temperatures for the impurity and
fluid particles is expressed by the prefactor in Eq. (44) and the factors of h in
wg
D and wg

m . Each effect is a different reflection of dissipation, of course, but
the Einstein coefficient provides an interesting explicit illustration of each
effect separately in the analysis.
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In summary, there is growing theoretical support for the validity of
hydrodynamic transport processes in granular fluids. However, in detail
some care is warranted in translating properties of normal fluids to those
with inelastic collisions. As demonstrated here, the familiar relationships
between diffusion, mobility, and friction constants no longer hold. The
modifications obtained above may be of some importance in choosing
parameters in sedimentation problems, for example.

APPENDIX A. ADJOINT LIOUVILLE OPERATORS

The average of some phase function A(C) at time t is given by

OA; tP=F dC r(C, t) A(C)=F dC[e−L̄tr(C)] A(C), (A1)

where the Liouville operator L̄ is defined following Eq. (9). An adjoint
Liouville operator L is defined by

OA; tP=F dC[e−L̄tr(C)] A(C)=F dC[r(C) eLtA(C)], (A2)

and is found to be

L=C
N

i=0
vi ·Ni+C

N

i=1
T(i, 0)+

1
2
C
N

i=1
C
N

j ] i
T(i, j), (A3)

T(i, j)=−s2 F dW G(−gij · ŝ)(gij · ŝ) d(rij− ŝ)(bij−1), (A4)

T(i, 0)=−s̄2 F dW G(−gi0 · ŝ)(gi0 · ŝ) d(ri0− s̄)(bi0−1), (A5)

where

bijgij=gij−(1+a) ŝ(ŝ ·gij), bi0gi0=gi0−(1+a0)(ŝ ·gi0) ŝ. (A6)

In a similar way an adjoint operator is associated with L̄ in Eq. (20) by

OA; tP=F dC[e−L̄tr(C)] A(C)=F dCr(C)[eLtA(C)] (A7)
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with

L — L+1
2 z(t) C

N

i=0
vi ·Nvi (A8)

Finally, its dimensionless form is

Lg — Lg+1
2 z

g C
N

i=0
vg
i ·Nvgi . (A9)

APPENDIX B. EVALUATION OF wg
D, wg

m, AND z g

The diffusion and mobility coefficients are determined from the
dimensionless frequencies wg

D, w
g
m , and z

g given by Eqs. (38), (39), and the
dimensionless form of Eq. (18). These can be simplified by using the results
of Appendix A. In the case of wg

D one gets

wg
D=−

O(Lgvg
0 ) · v

g
0Phcs

Ovg2
0 Phcs

=−
1
2
zg−

N
Ovg2
0 P hcs

O(Tg(1, 0) vg
0 ) · v

g
0Phcs

=−
1
2
zg+

2
3
hs̄g2 F dvg

1 F dvg
0 v

g
0 ·F dW G(−gg

10 · ŝ)

×fg(2)(vg
1 , v

g
0 , r10=s̄)(gg

10 · ŝ)(b10−1) vg
0

=−
1
2
zg+

2
3

mhs̄g2

(m+m0)
(1+a0) F dvg

1 F dvg
0 v

g
0 ·F dW G(−gg

10 · ŝ)

×fg(2)(vg
1 , v

g
0 , r10=s̄)(gg

10 · ŝ)
2 ŝ, (B1)

where fg(2)(vg
1 , v

g
0 , r10=s̄) is the reduced two particle distribution function

for the HCS evaluated at contact. Use has been made of the second
equality in Eq. (43), which defines the temperature of the impurity particle
T0(t) in the HCS. This temperature differs from that of the fluid T(t).
However, the cooling rates are the same so that the temperature ratio
T0(t)/T(t) is time independent. Similarly,
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wg
m=

1
3
7(Lgvg

0 ) ·
“ ln rg

hcs

“vg
0

8
hcs

=−
1
2
zg+

N
3
7(Tg(1, 0) vg

0 ) ·
“ ln rg

hcs

“vg
0

8
hcs

=−
1
2
zg−
s̄g2

3
F dvg

1 F dvg
0 F dW G(−gg

10 · ŝ) 5
“

“vg
0

fg(2)(vg
1 , v

g
0 , r10=s̄)6

×(gg
10 · ŝ)( b10−1) vg

0

=−
1
2
zg−

1
3

ms̄g2

(m+m0)
(1+a0) F dvg

1 F dvg
0 F dW G(−gg

10 · ŝ)(g
g
10 · ŝ)

2

× ŝ ·5 “
“vg
0

fg(2)(vg
1 , v

g
0 , r10=s̄)6 . (B2)

Finally, the cooling rate is

zg=(1−a2) 16 s
g4 F dvg

1 F dvg
2 F dW G(gg

ij · ŝ)(g
g
ij · ŝ)

3 fg(2)(vg
1 , v

g
2 , r12=s).

(B3)

Further simplifications are possible if velocity correlations are
neglected and the first Sonine approximation for the one particle distribu-
tion functions is used. In this case, one has

fg(2)(vg
1 , v

g
0 , r10=s̄)Q q0sg−2fg(1)(vg

1 ) f
g(1)
0 (vg

0 ), (B4)

fg(2)(vg
1 , v

g
2 , r12=s)Q qsg−4fg(1)(vg

1 ) f
g(1)(vg

2 ), (B5)

fg(1)(vg
1 )=1

1
p
23/2 e−vg21 51+c1

4
1vg4
1 −5vg2

1 +
15
4
26 , (B6)

fg(1)
0 (vg

0 )=1
h

p
23/2 e−hvg20 51+c0

4
1h2vg4

0 −5hvg2
0 +

15
4
26 . (B7)

Here, q0 is the pair correlation function for the fluid–impurity reduced dis-
tribution function evaluated at contact, q is the corresponding fluid–fluid
distribution, and h=Tm0/T0m. The coefficient c1 is (16)

c1(a)=
32(1−a)(1−2a2)

81−17a+30a2(1−a)
. (B8)
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The coefficient c0 is more complex and has a dependence on the mass ratio,
size ratio, and both restitution coefficients. Its calculation is described in
ref. 11 (If the impurity particle is mechanically the same as the fluid par-
ticles then c0 Q c1). Neglecting velocity correlations, Eqs. (B1)–(B3) become

wg
D=−

1
2
zg+

2
3
h
s̄g2

sg2
m

(m+m0)
(1+a0) q0 F dvg

1 F dvg
0 f

g(1)(vg
1 ) f

g(1)
0 (vg

0 )

× vg
0 ·F dW G(−gg

10 · ŝ)(g
g
10 · ŝ)

2 ŝ

=−
1
2
zg+
p

3
h
s̄g2

sg2
m

(m+m0)
(1+a0) q0ID, (B9)

wg
m=−

1
2
zg−

1
3
s̄g2

sg2
m

(m+m0)
(1+a0) q0 F dvg

1 F dvg
0 f

g(1)(vg
1 )

×5“f
g(1)
0 (vg

0 )
“vg
0

6 ·F dW G(−gg
10 · ŝ)(g

g
10 · ŝ)

2 ŝ

=−
1
2
zg+

2p
3
s̄g2

sg2
m

(m+m0)
(1+a0) q0Im, (B10)

zg=(1−a2)
1
6
q F dvg

1 F dvg
2 f

g(1)(vg
1 ) f

g(1)(vg
2 ) F dW G(gg

12 · ŝ)(g
g
12 · ŝ)

3

=(1−a2) q
p

12
Iz. (B11)

The integrals ID, Im, and Iz are defined by

ID=−F dvg
1 F dvg

0 f
g(1)(vg

1 ) f
g(1)
0 (vg

0 )(v
g
0 ·g

g
10) g

g
10, (B12)

Im=F dvg
1 F dvg

0 f
g(1)(vg

1 ) f
g(1)
0 (vg

0 ) g
g
10, (B13)

Iz=F dvg
1 F dvg

2 f
g(1)(vg

1 ) f
g(1)(vg

2 ) g
g3
12 . (B14)
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Consider first the evaluation of Iz. Introduce the approximate distri-
bution (B6) and retain terms up through linear in c1, consistent with the
Sonine polynomial expansion

Iz=p−3 F dvg
1 F dvg

2 e
−(vg21 +v

g2
2 )gg3

12
51+c1

4
1vg4
1 −5vg2

1 +
15
4
+vg4

2 −5vg2
2 +

15
4
26.

(B15)

The integration is straightforward with a change of variables to relative
and center of mass vg

1=(y+1
2 x) and vg

2=(y− 12 x) with the result

Iz=
16

`2p
11+ 3

32
c1 2 . (B16)

The cooling rate becomes

zg=(1−a2) q
4
3
=p

2
11+ 3

32
c1 2 . (B17)

The integrals ID and Im are somewhat more complicated. Introducing the
distribution functions and retaining terms up through linear in c0 and c1

ID=−1hh1
p2
23/2 F dvg

1 F dvg
0 e

−(h1 v
g2
1 +hv

g2
0 )gg

10(v
g
0 ·g

g
10)

×51+c0
4
1h2vg4

0 −5hvg2
0 +

15
4
2+c1

4
1h21vg4

1 −5h1v
g2
1 +

15
4
26

=1hh1
p2
23/2 31+c0

4
1h2 d2

dh2
+5h

d
dh

+
15
4
2

+
c1
4
1h21

d2

dh21
+5h1

d
dh1

+
15
4
24 JD(h, h1) (B18)

where

JD(h, h1)=−F dvg
1 dv

g
0 e

−(h1v
g2
1 +hv

g2
0 )gg

10(v
g
0 ·g

g
10) (B19)
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and the parameter h1 Q 1 after the differentiations. Similarly,

Im=1
hh1

p2
23/2 31+c0

4
1h2 d2

dh2
+5h

d
dh

+
15
4
2

+
c1
4
1h21

d2

dh21
+5h1

d
dh1

+
15
4
24 Jm(h, h1), (B20)

Jm(h, h1)=F dvg
1 F dvg

0 e
−(h1v

g2
1 +hv

g2
0 )gg

10. (B21)

The integrals JD(h, h1) and Jm(h, h1) can be performed by the change of
variables

x=vg
1 − vg

0 , y=h1v
g
1+hv

g
0 , (B22)

with the Jacobian (h1+h)−3. The integrals become

JD(h, h1)=h1(h1+h)−4 F dx x3e−ax
2
F dy e−by

2
, (B23)

Jm(h, h1)=(h1+h)−3 F dx xe−ax
2
F dy e−by

2
, (B24)

where

a=(h1+h)−1 hh1, b=(h1+h)−1. (B25)

The integrals are easily performed, with the results

JD(h, h1)=4p5/2
(h1+h)1/2

h3h21
, Jm(h, h1)=2p5/2

(h1+h)1/2

h2h21
(B26)

The integrals ID and Im follow directly from (B18) and (B20)

ID=4h−3/2p−1/2(1+h)1/2 51+c0
16

4h+3
(1+h)2

−
c1
16

h2

(1+h)2
6 , (B27)

Im=2p−1/2h−1/2(1+h)1/2 51− c0
16

1
(1+h)2

−
c1
16

h2

(1+h)2
6 . (B28)
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Finally, use of these results in Eqs. (B9) and (B10) gives the desired
results

wg
D=−

1
2
zg+ng 51+c0

16
4h+3
(1+h)2

−
c1
16

h2

(1+h)2
6 , (B29)

wg
m=−

1
2
zg+ng 51− c0

16
1

(1+h)2
−
c1
16

h2

(1+h)2
6 , (B30)

ng=
4`p

3

m
(m+m0)

q0
s̄2

s2
(1+a0) h−1/2(1+h)1/2. (B31)
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